

**STU** SvF

**TRAINING COURSE 16<sup>TH</sup> – 20<sup>TH</sup> SEPTEMBER 2024 Energy Efficient Buildings** 

# Energy management and monitoring of buildings

# Prof. Ing. Dušan Petráš, PhD.

Erasmus+ CBHE project n. 101082898-2022 Innovative Master Courses Supporting the Improvement of the Energy and Carbon Footprint of the Ukrainian Building Stock



Co-funded by the European Union





# **ENERGY MONITORING**







# **The ENCON Process**







### **Norwegian Experience**







# **Norwegian Experience**







# **Norwegian Experience**







# **Energy Monitoring**

# Aims :

- **1. Correct operation of technical equipment**
- 2. Quick detection of errors / breakdown of technical equipment
- 3. Reduced energy consumption
- 4. Documentation of results from energy conservation measures
- 5. Up to date O&M personnel





# **Energy Monitoring**

Periodic (weekly) registrations of the energy consumption and corresponding mean outdoor temperature

#### Energy consumption [kWh/m<sup>2</sup>week]







**ET-curve** 







# **Deviations**?







# **Broken automatic control system**

#### No temperature night set-back.







# **Additional cost**

Building area Energy price 2.300 m<sup>2</sup> 0,12 USD/kWh

Additional costs:

4 kWh/m<sup>2</sup>week · 2.300 m<sup>2</sup> · 0,12 USD/kWh = <u>1.100 USD/week</u>

**Energy monitoring system** 

The fault is repaired after only 1 week !

If the inspection is 8 weeks later, 8.800 USD is lost !





### **ET-curve before/after ENCON**







### **Procedure - every week**

- **Read the energy meter**
- **Calculate the specific energy consumption**
- **D**? Register the outdoor mean temperature
- **Plot these registrations in the ET-curve**
- Deviations from the ET-curve ? Identify and carry out corrections !







# Equipment

- Mean outdoor temperature meter
- **Energy meters**
- **Energy account schemes**
- **ET-curve**
- **Deviation checklist**







### Mean temperature meter

- Measures the mean outdoor temperature and length of the period (1 week = 168 h)
- **Placed indoor, easy to reach for the user**
- **D**? The censor placed in a shady area







# **Energy meter**

- Meters for electricity, district heating, gas and oil
- Read the consumption (kWh, GJ, etc.) directly or calculate by conversion factors
- Additional meters to separate the building in energy sections / systems ?





# **Energy account schemes**

- **Registrations from energy- and temperature meters**
- Calculations to be plot into the ET-curve







**ET-curve** 



**Unique ET-curve for each building** 





# **Deviation Checklist**

| Systems to be checked | Possible reasons                                       |
|-----------------------|--------------------------------------------------------|
| Heating system        | Wrong set point of thermostats                         |
|                       | Automatic control system in manual position            |
|                       | (i.e. no temperature control during the day)           |
|                       | Broken timer for night set back                        |
|                       | Open dampers in boilers when no operation (draft loss) |
|                       | Open windows                                           |
|                       | Broken control valves (no shunting of water)           |
|                       | Leakage in the distribution system                     |
|                       | to be continued                                        |
| Ventilation system    | Broken timer for start / stop                          |
|                       | Broken heat recovery unit                              |
|                       | to be continued                                        |





# **Computerized Energy Monitoring**

Additional information:

- Energy costs
- **Accumulated energy costs and consumption**
- **Continuous prognoses**
- Measured energy consumption compared with the calculated consumption
- **Weekly and accumulated deviations from the ET-curve**
- Annual consumption and costs, measured and calculated









# **Industry - EP-curve**

#### **Energy - Production curve**







# **The ENCON Process**







# **OPERATION AND MAINTENANCE**









# **Operation and maintenance**

### Aims :

2.

3.

- 1. Provide suitable conditions in the building/process
  - Keep the operation costs as low as possible, permanently
    - **Prevent large and expensive repairs**







# **Operation and Maintenance**

**Definitions:** 

Operation:Technical systems:Regular inspection of all technical systemsBuilding envelope:Regular inspection to ensure correct condition

#### Maintenance, periodical:

Scheduled work required at certain intervals to maintain the condition of the building/process

<u>Technical systems:</u> Planned work such as replacement of filters, greasing of motors, lighting bulbs, etc.

**Building envelope:** Planned work as painting of wooden facades, replacement of gaskets and outdoor grouting, etc.

#### Maintenance, acute:

Replacement caused by worn out or broken systems and components





### **Acute maintenance**

Replacement caused by worn out or broken systems and components

- **Breakdown of pumps**
- **Breakdown of burner**
- **Leakage in the roof**
- **Broken windows**
- etc.







# **Project economy**

- **Capital cost**
- **Administration cost**
- **Operation cost**
- **Maintenance cost**







# **Capital cost**

All investments to construct the building/project:

- **Acquisition price of the site**
- **Consultancy fees**
- **Construction costs**
- **Insurance during construction, taxes, etc.**
- **Financing costs during construction**



**Major renovation = Capital cost** 



# **Administration cost**

- **Taxes, duties and licenses**
- Insurance
- **D**? Salaries for Management staff



# **Operation cost**

- **Salaries for O&M personnel**
- **External service companies**
- **O&M** components
- **Cleaning**
- **Energy**
- **Water, etc.**









# **Maintenance cost**

Both periodical and acute maintenance:

- Regular, preventive maintenance (own and/or external personnel)
- **Maintenance of components**
- **Improvements**
- **D**? **Repairs and replacements**







# Lifetime cost

- I<sub>0</sub> Capital cost ( = Investment )
- A Administration cost
- O Operation cost
- M Maintenance cost
- r Real interest rate
- n Lifetime (normally technical lifetime)







# Lifetime cost









# **Gas heating central**

| Investment<br>Real interest rate                 | l <sub>o</sub><br>r | = 10 (  | 000 USD     |        |                     |
|--------------------------------------------------|---------------------|---------|-------------|--------|---------------------|
| Real Interest rate                               | I                   | =       | 10 %        |        |                     |
| Regular maintenance                              | Μ                   | = 700   | USD/year    | n      | = 20 years          |
| No maintenance                                   | Μ                   | = 0     | USD/year    | n      | = 10 years          |
| The most profitable alternative after 20 years ? |                     |         |             |        |                     |
| Alternative 1                                    | I <sub>0</sub>      |         |             |        | = 10 000 USD        |
|                                                  | $M_2$               | 0 years | = 20 · 700  | ) USI  | D = 14000USD        |
|                                                  |                     |         |             |        | <u>= 24 000 USD</u> |
| Alternative 2                                    | l <sub>o</sub>      |         |             |        | = 10 000 USD        |
| ?                                                | I <sub>10</sub>     |         |             |        | <u>= 10 000 USD</u> |
| 5                                                |                     |         |             |        | <u>= 20 000 USD</u> |
|                                                  | egu                 | lar ma  | intenance r | iot pi | rofitable ?         |





# Lifetime cost

Alternative 1 (Systematic maintenance for 20 years):

Lifetime cost = 
$$I_0 + M \cdot \frac{1 - (1 + r)^{-n}}{r_{-20}}$$
  
= 10.000 + 700  $\cdot \frac{1 - (1 + 0.10)}{0.10}$  = 15 960 USD

Alternative 2

 $I_0 = 10\ 000\ USD$ 

= 20 000 USD

### Regularly maintenance = Profitable !







### **Annual cost**

The lifetime cost as an annuity over the lifetime:



![](_page_37_Picture_0.jpeg)

![](_page_37_Figure_1.jpeg)

# **Office building**

![](_page_37_Picture_3.jpeg)

| Lifetime cost      |   | 1 500 000 USD |
|--------------------|---|---------------|
| Real interest rate | r | 5 %           |
| Lifetime           | n | 50 years      |

#### What is the annual costs ?

Annual costs

- = **f** · Lifetime cost
- = 0,05478 · 1.500.000 USD <u>= 82 170 USD/year</u>

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

# **Annual cost analyses**

- **During design/planning, implementation as well as operation**
- Evaluation of alternative solutions
- **Evaluation of changed operation procedures**

**Profitable solution ?** 

**Evaluate lifetime cost, not only investment** 

![](_page_38_Picture_8.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

### **O&M costs**

#### Norwegian standard figures

| Buildings                | Offices /<br>shops | Schools | Nursing<br>homes | Hospitals |
|--------------------------|--------------------|---------|------------------|-----------|
| Operation and inspection | 10 – 20            | 9 – 19  | 8 – 16           | 13 – 25   |
| Cleaning                 | 12 – 31            | 15 – 38 | 11 – 28          | 11 – 28   |
| Energy                   | 20 – 26            | 14 – 18 | 18 – 24          | 18 – 24   |
| Sum, Operation (*)       | 42 – 77            | 38 – 75 | 37 – 68          | 42 – 77   |
| Maintenance              | 6 – 19             | 6 – 20  | 7 – 27           | 5 – 14    |
| Sum, O & M (**)          | 67                 | 65      | 63               | 65        |

All figures in USD/m<sup>2</sup>year

![](_page_40_Picture_0.jpeg)

![](_page_40_Figure_1.jpeg)

### **Documentation**

- **How** are the installations supposed to operate
- **Which installations to maintain**
- **How to maintain the installations**
- **When to maintain the installations**
- **Who is responsible for doing the work**

![](_page_40_Figure_8.jpeg)

The documentation must exist, and be easily accessible and useable

### **Operation and Maintenance Manuals**

![](_page_41_Picture_0.jpeg)

![](_page_41_Figure_1.jpeg)

# **Operation and Maintenance Manual**

- **1.** Address, phone list, etc.
- 2. System overview
- **3. Principal drawings**
- 4. Operation tables
- **5.** Operation check lists
- 6. Annual and monthly plans
- 7. Weekly plans (\*)
- 8. Energy consumption
- 9. Component cards
- **10.** Spare part list
- **11.** Brochures
- **12.** Drawings
- **13.** Balancing protocols

(\*) Use of weekly plans must be decided for each project.

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

# **Time-control tools**

**1.** Manual forms or charts

2. Job card wall board

![](_page_42_Figure_5.jpeg)

![](_page_42_Picture_6.jpeg)

Week Month

![](_page_42_Picture_8.jpeg)

3. Computer based tools

Manual systems: Computer based tool:

< 10 - 15 000 m<sup>2</sup> floor area
> 10 - 15 000 m<sup>2</sup> floor area

![](_page_42_Picture_12.jpeg)

![](_page_43_Picture_0.jpeg)

# **Time-control tools**

**STU** SvF

The organisation depends on :

- The size of the project/building(s)
- Installation complexity

#### towards:

| 2  | The qualification on the existing staff |
|----|-----------------------------------------|
| 2  | The size of the existing staff          |
| 2  | The need and availability of expertise  |
| ]? | The required equipment for O&M          |

O&M done by :

- 1. Internal personnel
- 2. Partly by internal personnel the rest by professional companies
- **3.** All by professional companies

![](_page_43_Picture_12.jpeg)

![](_page_43_Picture_13.jpeg)

![](_page_44_Picture_0.jpeg)

![](_page_44_Figure_1.jpeg)

# Efficient O&M ?

- **Qualification and motivation of the O&M personnel**
- Easy traceable responsibility
- **Available O&M Manuals**
- **The O&M and automatic control system is compatible**

![](_page_44_Picture_7.jpeg)

![](_page_45_Picture_0.jpeg)

**STU** SvF

**TRAINING COURSE 16<sup>TH</sup> – 20<sup>TH</sup> SEPTEMBER 2024 Energy Efficient Buildings** 

# THANK YOU FOR YOUR ATTENTION

# Prof. Ing. Dušan Petráš, PhD.

Erasmus+ CBHE project n. 101082898-2022 Innovative Master Courses Supporting the Improvement of the Energy and Carbon Footprint of the Ukrainian Building Stock

![](_page_45_Picture_6.jpeg)

Co-funded by the European Union